最新消息:

调试器工作原理——基础篇(转)

Crack 大步 1005浏览 0评论

原文链接:调速器工作原理——基础篇

本文是一系列探究调试器工作原理的文章的第一篇。我还不确定这个系列需要包括多少篇文章以及它们所涵盖的主题,但我打算从基础知识开始说起。

关于本文

我打算在这篇文章中介绍关于Linux下的调试器实现的主要组成部分——ptrace系统调用。本文中出现的代码都在32位的Ubuntu系统上开发。请注意,这里出现的代码是同平台紧密相关的,尽管移植到别的平台上应该不会太难。

动机

要想理解我们究竟要做什么,试着想象一下调试器是如何工作的。调试器可以启动某些进程,然后对其进行调试,或者 将自己本身关联到一个已存在的进程之上。它可以单步运行代码,设置断点然后运行程序,检查变量的值以及跟踪调用栈。许多调试器已经拥有了一些高级特性,比 如执行表达式并在被调试进程的地址空间中调用函数,甚至可以直接修改进程的代码并观察修改后的程序行为。

尽管现代的调试器都是复杂的大型程序,但令人惊讶的是构建调试器的基础确是如此的简单。调试器只用到了几个由操作系统以及编译器/链接器提供的基础服务,剩下的仅仅就是简单的编程问题了。(可查阅维基百科中关于这个词条的解释,作者是在反讽)

调试器工作原理——基础篇(转) - ksharp_dabu - ksharp_dabu的博客

 

Linux下的调试——ptrace

Linux下调试器拥有一个瑞士军刀般的工具,这就是ptrace系统调用。这是一个功能众多且相当复杂的工 具,能允许一个进程控制另一个进程的运行,而且可以监视和渗入到进程内部。ptrace本身需要一本中等篇幅的书才能对其进行完整的解释,这就是为什么我 只打算通过例子把重点放在它的实际用途上。让我们继续深入探寻。

 

遍历进程的代码

我现在要写一个在“跟踪”模式下运行的进程的例子,这里我们要单步遍历这个进程的代码——由CPU所执行的机器 码(汇编指令)。我会在这里给出例子代码,解释每个部分,本文结尾处你可以通过链接下载一份完整的C程序文件,可以自行编译执行并研究。从高层设计来说, 我们要写一个程序,它产生一个子进程用来执行一个用户指定的命令,而父进程跟踪这个子进程。首先,main函数是这样的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
int main(int argc, char** argv)
{
    pid_t child_pid;
 
    if (argc < 2) {
        fprintf(stderr, "Expected a program name as argumentn");
        return -1;
    }
 
    child_pid = fork();
    if (child_pid == 0)
        run_target(argv[1]);
    else if (child_pid > 0)
        run_debugger(child_pid);
    else {
        perror("fork");
        return -1;
    }
 
    return 0;
}

代码相当简单,我们通过fork产生一个新的子进程。随后的if语句块处理子进程(这里称为“目标进程”),而else if语句块处理父进程(这里称为“调试器”)。下面是目标进程:

1
2
3
4
5
6
7
8
9
10
11
12
13
void run_target(const char* programname)
{
    pro
cmsg(
"target started. will run '%s'n", programname);
 
    /* Allow tracing of this process */
    if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
        perror("ptrace");
        return;
    }
 
    /* Replace this process's image with the given program */
    execl(programname, programname, 0);
}

这部分最有意思的地方在ptrace调用。ptrace的原型是(在sys/ptrace.h):

1
long ptrace(enum __ptrace_request request,  pid_t pid, void *addr,  void *data);

第一个参数是request,可以是预定义的以PTRACE_打头的常量值。第二个参数指定了进程id,第三以及第四个参数是地址和指向数据的指 针,用来对内存做操作。上面代码段中的ptrace调用使用了PTRACE_TRACEME请求,这表示这个子进程要求操作系统内核允许它的父进程对其跟 踪。这个请求在man手册中解释的非常清楚:

表明这个进程由它的父进程来跟踪。任何发给这个进程的信号(除了SIGKILL)将导致该进程停止运行,而它的父进程会通过wait()获得通知。另外,该进程之后所有对exec()的调用都将使操作系统产生一个SIGTRAP信号发送给它,这让父进程有机会在新程序开始执行之前获得对子进程的控制权。如果不希望由父进程来跟踪的话,那就不应该使用这个请求。(pid、addr、data被忽略)

我已经把这个例子中我们感兴趣的地方高亮显示了。注意,run_target在ptrace调用之后紧接着做的是通过execl来调用我们指定的程 序。这里就会像我们高亮显示的部分所解释的那样,操作系统内核会在子进程开始执行execl中指定的程序之前停止该进程,并发送一个信号给父进程。

因此,是时候看看父进程需要做些什么了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
void run_debugger(pid_t child_pid)
{
    int wait_status;
    unsigned icounter = 0;
    procmsg("debugger startedn");
 
    /* Wait for child to stop on its first instruction */
    wait(&wait_status);
 
    while (WIFSTOPPED(wait_status)) {
        icounter++;
        /* Make the child execute another instruction */
        if (ptrace(PTRACE_SINGLESTEP, child_pid, 0, 0) < 0) {
            perror("ptrace");
            return;
        }
 
        /* Wait for child to stop on its next instruction */
        wait(&wait_status);
    }
 
    procmsg("the child executed %u instructionsn", icounter);
}

通过上面的代码我们可以回顾一下,一旦子进程开始执行exec调用,它就会停止然后接收到一个SIGTRAP信号。父进程通过第一个wait调用正 在等待这个事件发生。一旦子进程停止(如果子进程由于发送的信号而停止运行,WIFSTOPPED就返回true),父进程就去检查这个事件。

父进程接下来要做的是本文中最有意思的地方。父进程通过PTRACE_SINGLESTEP以及子进程的id号来调用ptrace。这么做是告诉操 作系统——请重新启动子进程,但当子进程执行了下一条指令后再将其停止。然后父进程再次等待子进程的停止,整个循环继续得以执行。当从wait中得到的不 是关于子进程停止的信号时,循环结束。在正常运行这个跟踪程序时,会得到子进程正常退出(WIFEXITED会返回true)的信号。

icounter会统计子进程执行的指令数量。因此我们这个简单的例子实际上还是做了点有用的事情——通过在命令行上指定一个程序名,我们的例子会执行这个指定的程序,然后统计出从开始到结束该程序执行过的CPU指令总数。让我们看看实际运行的情况。

 

实际测

转载请注明:大步's Blog » 调试器工作原理——基础篇(转)

发表我的评论
取消评论

表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
SiteMap